General Description

The TYCO DV-5a Automatic Water Control Valve Single Interlock Preaction Dry Pilot Actuation is a diaphragm type valve that can be used in single interlock preaction fire protection systems. When properly trimmed, the double seat design of the DV-5a Valve also provides actuation of fire alarms upon system operation.

The diaphragm style design of the DV-5a Valve allows external resetting, providing for easy resetting of a deluge system without having to open a valve handhole cover to manually reposition a clapper and/or latch mechanism. Simply re-pressurizing the diaphragm chamber resets the valve.

The DV-5a features internal and external coating of the valve to provide corrosion resistance. The external corrosion resistance of the epoxy coating permits the use of the DV-5a in corrosive atmospheres associated with many types of industrial processing plants and outdoor installations.

The DV-5a Single Interlock Preaction Dry Pilot Actuation Valve is offered with or without a System Main Control Valve.

The DV-5a Single Interlock Preaction Dry Pilot Actuation Valve utilizes automatic sprinklers and a supplemental detection system, comprised of dry pilot lines. Actuation of the detection system automatically operates (releases) the DV-5a Valve, allowing water to flow into the sprinkler piping system and to be discharged from any sprinklers that may subsequently open.

Typically, the system designer selects the detection components for a single interlock preaction system that will respond to a fire sooner than the automatic sprinklers. Consequently, the system will experience a minimal delay in water delivery over that for a wet pipe sprinkler system because the system will have essentially filled with water before a sprinkler operates. The DV-5a Single Interlock Preaction Dry Pilot-Actuation Valve automatically supervises the integrity of the overall system. Supervision is provided by monitoring a relatively low air pressure in the system via a low pressure alarm switch so as to detect leaks in the system that otherwise would result in unwanted water discharge should the system operate in a fire condition.

Supervised single interlock preaction systems are generally used to protect areas where there is danger of serious water damage that might result from damaged automatic sprinklers or piping. Typically, such areas include computer rooms, storage areas for valuable artifacts, libraries, and archives.

Single interlock preaction systems are also effectively used to protect properties where a pre-alarm of a possible fire condition may allow time for fire extinguishment by alternate suppression means, prior to a sprinkler discharge. In the event the fire cannot otherwise be extinguished, the preaction sprinkler system will then perform as the primary fire protection system.

Available End Connections and Weights — lb (kg)

<table>
<thead>
<tr>
<th>End Connection</th>
<th>Nominal Valve Size ANSI Inches (DN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inlet 1 1/2 (40) Outlet 2 (50)</td>
</tr>
<tr>
<td>Thread Thread</td>
<td>26 (11,8) 25 (11,3)</td>
</tr>
<tr>
<td>Groove Groove</td>
<td>25 (11,3) 25 (11,3)</td>
</tr>
<tr>
<td>Flange Groove</td>
<td>N/A N/A</td>
</tr>
<tr>
<td>Flange Flange</td>
<td>72 (32,7) N/A</td>
</tr>
</tbody>
</table>

IMPORTANT

Refer to Technical Data Sheet TFP2300 for warnings pertaining to regulatory and health information.
Nominal Valve Size ANSI Inch (DN)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Qty.</th>
<th>1 1/2 (DN40)</th>
<th>2 (DN50)</th>
<th>3 (DN80)</th>
<th>4 (DN100)</th>
<th>6 (DN150)</th>
<th>8 (DN200)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>P/N</td>
<td>P/N</td>
<td>P/N</td>
<td>P/N</td>
<td>P/N</td>
<td>P/N</td>
</tr>
<tr>
<td>1</td>
<td>Valve Body</td>
<td>1</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
</tr>
<tr>
<td>2</td>
<td>Diaphragm</td>
<td>1</td>
<td>5450000020</td>
<td>545000020</td>
<td>545000030</td>
<td>545000040</td>
<td>545000060</td>
<td>545000080</td>
</tr>
<tr>
<td>3</td>
<td>Diaphragm Cover</td>
<td>1</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
</tr>
<tr>
<td>4</td>
<td>Hex Bolt, Short a</td>
<td>2</td>
<td>545100001</td>
<td>545100001</td>
<td>545100002</td>
<td>545100003</td>
<td>545100004</td>
<td>545100003</td>
</tr>
<tr>
<td>5</td>
<td>Hex Bolt, Long</td>
<td>2</td>
<td>545100011</td>
<td>545100011</td>
<td>545100012</td>
<td>545100013</td>
<td>545100014</td>
<td>545100015</td>
</tr>
<tr>
<td>6</td>
<td>Lift Washer</td>
<td>2</td>
<td>N/A</td>
<td>N/A</td>
<td>545100021</td>
<td>545100022</td>
<td>545100023</td>
<td>545100022</td>
</tr>
<tr>
<td>7</td>
<td>Hex Nut</td>
<td>2</td>
<td>545100031</td>
<td>545100031</td>
<td>545100032</td>
<td>545100033</td>
<td>545100034</td>
<td>545100033</td>
</tr>
<tr>
<td>8</td>
<td>Hoist Ring</td>
<td>2</td>
<td>545100041</td>
<td>545100041</td>
<td>545100041</td>
<td>545100041</td>
<td>545100041</td>
<td>545100041</td>
</tr>
<tr>
<td>9</td>
<td>Flat Washer</td>
<td>2</td>
<td>N/A</td>
<td>N/A</td>
<td>545100024</td>
<td>545100025</td>
<td>545100025</td>
<td>545100025</td>
</tr>
</tbody>
</table>

NOTES:

- a. Hex Bolt, Short, Qty. 6 in 6 and 8 inch (DN150 and DN200) assemblies
- b. Lift Washer not used in 1 1/2 and 2 inch (DN40 and DN50) assemblies
- c. N/R = Not Replaceable
- d. Order replacements parts only via Part Numbers given, do not replace Hex Bolt, Hex Nut, Lift Washer or Hoist Ring with common hardware parts

Flange Drilling Specification

Nominal Dimensions in Inches and (mm)

<table>
<thead>
<tr>
<th>Nominal Valve Size ANSI Inches (DN)</th>
<th>ANSI B16.1
(Class 125)</th>
<th>ISO 7005-2
(PN16) a</th>
<th>JIS B 2210
(10K)</th>
<th>AS 2129
(Table E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>N</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>3 (80)</td>
<td>6.00 (152,4)</td>
<td>0.75 (19,0)</td>
<td>4</td>
<td>6.30 (160,0)</td>
</tr>
<tr>
<td>4 (100)</td>
<td>7.50 (190,5)</td>
<td>0.75 (19,0)</td>
<td>8</td>
<td>7.09 (180,0)</td>
</tr>
<tr>
<td>6 (150)</td>
<td>9.50 (241,3)</td>
<td>0.88 (22,2)</td>
<td>8</td>
<td>9.45 (240,0)</td>
</tr>
<tr>
<td>8 (200)</td>
<td>11.75 (298,5)</td>
<td>0.88 (22,2)</td>
<td>8</td>
<td>11.61 (295,0)</td>
</tr>
</tbody>
</table>

NOTES:

- a. Same drilling as for ANSI B16.5 (Class 150) and ANSI B16.42 (Class 150)
- b. Same drilling as for BS 4504 Section 3.2 (PN16) and DIN 2532 (PN16)
<table>
<thead>
<tr>
<th>Port</th>
<th>Port Description</th>
<th>Port Sizes, NPT Inch per ANSI B1.20.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 1/2 (DN40)</td>
</tr>
<tr>
<td>P1</td>
<td>Diaphragm Chamber Supply</td>
<td>1/2</td>
</tr>
<tr>
<td>P2</td>
<td>Water Supply Pressure & Alarm Test</td>
<td>1/2</td>
</tr>
<tr>
<td>P4</td>
<td>Automatic Drain Valve</td>
<td>1/2</td>
</tr>
<tr>
<td>P6</td>
<td>Main Drain</td>
<td>3/4</td>
</tr>
<tr>
<td>P7</td>
<td>System Air Supply</td>
<td>1/2</td>
</tr>
</tbody>
</table>

FIGURE 2

DV-5a VALVE OPERATION, PREACTION SYSTEMS
NOTICE

The DV-5a Single Interlock Preaction Dry Pilot Actuation Valve described herein must be installed and maintained in compliance with this document, as well as with the applicable standards of the NATIONAL FIRE PROTECTION ASSOCIATION (NFPA), in addition to the standards of any other authorities having jurisdiction. Failure to do so may impair the performance of these devices.

The owner is responsible for maintaining their fire protection system and devices in proper operating condition. Contact the installing contractor or product manufacturer with any questions.

Technical Data

Approvals
UL and C-UL Listed
FM Approved

Listing and Approvals are based on the DV-5a Single Interlock Preaction Dry Pilot Actuation Valve being trimmed as described in Figure 5.

DV-5a Valve
Components for the 1 1/2 in. to 8 in. (DN40 to DN200) DV-5a Valves are shown in Figure 1. The DV-5a Valves is for vertical installations. It is rated for use at service pressures of 20 to 300 psi (1,4 to 20,7 bar).

The take-out dimensions are shown in Figure 3, and flanged connections are available drilled per ANSI, ISO, AS, and JIS specifications (See Table A). Threaded inlet and outlet connections are available in NPT or ISO 7-1. Threaded port connections are NPT threaded.

Note: PN16 flanges are pressure rated to 16 bar.

Valve Trim
The maximum pressure rating for the Single Interlock Preaction Dry Pilot Actuation Trim is 250 psi (17,2 bar).

When the system pressure is greater than 175 psi (12,1 bar), provision is to be made to replace the standard order 300 psi (20,7 bar) Water Pressure Gauges with separately ordered 600 psi (41,4 bar) Water Pressure Gauges.

If the addition of an Alarm Control Valve is desired or required by the local AHJ, the Alarm Control Valve noted as Item H in Figure 8 is to be a separately ordered electronically supervised normally open valve.

External trim connections are NPT threaded. EMEA trim is provided with NPT x ISO 7-1 thread adapters.

Pressure Loss
See Graph A

Detection System
See the Dry Pilot Actuation subsection

System Air Pressure Requirements
The supervisory air (nitrogen) pressure is to be 10 ± 2 psi (0,69 ± 0,07 bar). The use of a higher supervisory pressure is subject to approval by the authority having jurisdiction, and it should be understood that the use of a higher supervisory pressure may increase water delivery time. The use of a lower supervisory pressure may prevent clearing the alarm of the Supervisory Low Pressure Switch (Item T - Figure 8), which is factory set to alarm at 5 ± 1 psi (0,34 ± 0,07 bar) on decreasing pressure. The supervisory air supply pressure of 10 ± 2 psi (0,69 ± 0,07 bar) can be provided by any of the following methods. Refer to the applicable data sheet for laboratory approval information.

- A maximum 200 psi (13,8 bar) plant air supply in combination with the Model AMD-1 Air Maintenance Device described in Technical Data Sheet TFP1221.
- A maximum 3000 psi (206,9 bar) nitrogen cylinder in combination with the Model AMD-3 Nitrogen Maintenance Device described in Technical Data Sheet TFP1241.

Note: The dew point of the air or nitrogen supply for a system exposed to freezing conditions must be maintained below the lowest ambient temperature to which the system piping will be exposed. Introduction of moisture into the system piping can create ice build-up that could prevent proper operation of the system.

The Supervisory Low Pressure Switch (Item T - Figure 8) is factory set at 5 ± 1 psi (0,34 ± 0,07 bar) on decreasing pressure. The Pressure Relief Valve (Item S - Figure 8) is factory set to fully open at 25 ± 2 psi (1,72 ± 0,14 bar) and it begins to crack open at a pressure of about 18 psi (1,24 bar).
Materials of Construction

Valve Body
Epoxy coated ductile iron per ASTM A536-77, Grade 65-45-12

Diaphragm Cover
Epoxy coated ductile iron per ASTM A536-77, Grade 65-45-12

Diaphragm
Polyester fabric reinforced, TEFOLON coated, EPDM rubber per ASTM D2000

Diaphragm Cover Fasteners
Aluminum zinc coated steel

Common Hardware Trim
- Common hardware pipe fittings are galvanized or black as required and are malleable per ASME B16.3.
- Common hardware pipe nipples are galvanized or black as required and are Schedule 40 per ASTM A53 or A135.
- Common hardware compression fittings are brass per ASTM B16.
- Common hardware tubing is Type L copper per ASTM B88.

Operation

The TYCO DV-5a Valve is a diaphragm style valve that depends upon water pressure in the Diaphragm Chamber, see Figure 2A, to hold the Diaphragm closed against the water supply pressure.

When the DV-5a Valve is set for service, the Diaphragm Chamber is pressurized through the trim connections from the inlet side of the system's main control valve.

Opening the Dry Pilot Actuation trips the Model MRA-1 Manual Reset Actuator. Tripping the MRA-1 releases water from the DV-5a Diaphragm Chamber faster than it can be replenished through a 1/8 in. (3.2 mm) restriction located in the Diaphragm Chamber Supply Connection. Release of water through the MRA-1 results in a rapid pressure drop in the DV-5a Diaphragm Chamber. The force differential applied through the Diaphragm to hold the Diaphragm in the set position is then reduced below the valve trip point. The water supply pressure then forces the Diaphragm open permitting water to flow into the system piping, as well as through the Alarm Port to actuate the system alarms (See Figure 2B).

Upon opening of the DV-5a Valve, the Model MRA-1 Manual Reset Actuator opens to constantly vent the DV-5a Diaphragm Chamber to hydraulically latch the DV-5a in the tripped position until manually reset.

In standby mode, the integrity of the system piping is supervised by a low pressure alarm switch.

See the Dry Pilot Actuation sections for additional information.
Dry Pilot Actuation

The Dry Pilot Actuation Trim forms a part of the laboratory approval of the DV-5a Valves and is necessary for their proper operation.

With reference to Figure 4, the Dry Pilot Actuation Trim provides for installation of a detection system consisting of pilot sprinklers (heat detectors) and Manual Control Stations interconnected with a minimum length of 56 ft (17.1 m) of 1/2 in. (DN15) steel pipe equivalent to 207 in.³ (3400 cm³). The dry pilot line, which is to be pressurized with air or nitrogen, is connected to the Dry Pilot Line Connection.

Dimensions are provided in Figure 7.

Pilot sprinklers are to be minimum 5.6 K-factor (80 K-factor) orifice approved automatic sprinklers. Manual Control Stations are to be the Model MC-1 described in Technical Data Sheet TFP1382.

Note: For Single Interlock Preaction Systems with Dry Pilot Actuation, the system designer typically selects dry pilot sprinklers that will operate sooner than the automatic sprinklers chosen for use on the sprinkler piping.

Provision must be made for installing a 5.6 K-factor (80 K-factor) Inspector’s Test Connection at the most remote location on the dry pilot line.

The Dry Pilot Actuation Trim is provided with a Model DP-1 Dry Pilot Actuator, which is described in Technical Data Sheet TFP1380. The Actuator is rated for use at a maximum pilot service pressure of 50 psi (3.4 bar) and a maximum water supply service pressure of 250 psi (17.2 bar).

Graph B shows the minimum pilot line service pressure as a function of the water supply pressure. The pressure in the dry pilot actuation system must be automatically maintained using one of the following maintenance devices, as appropriate:

- Model AMD-1 Air Maintenance Device (pressure reducing type), refer to Technical Data Sheet TFP1221
- Model AMD-2 Air Maintenance Device (compressor control type), refer to Technical Data Sheet TFP1231
- Model AMD-3 Nitrogen Maintenance Device (high pressure reducing type), refer to Technical Data Sheet TFP1241

Supervision of the pressure in the dry pilot actuation system and an alarm that separately indicates operation of the detection system is provided by a Low Pressure Alarm Switch set as follows:

- Low pressure alarm setting at approximately 6 psi (0.4 bar) below the minimum pilot line service pressure requirement shown in Graph B
- Fire alarm setting at approximately 15 psi (1.0 bar) below the minimum pilot line service pressure requirement shown in Graph B

The Dry Pilot Air Pressure Relief Valve provided in the trim is factory set to relieve at a pressure of approximately 45 psi (3.1 bar); however, it may be field adjusted to a lower pressure, if required.

The dry pilot line is to be provided with low point drains to enable draining of condensate.

Note: At a minimum, it is recommended that internally galvanized pipe and cast iron fittings be used for dry pilot lines.
Installation

The TYCO DV-5a Single Interlock Pre-action Dry Pilot Actuation Valve is to be installed in accordance with this section.

NOTICE

DV-5A Automatic Water Control Valves are designed to be used in freshwater systems. When the supply is from an alternative source such as brackish water, saltwater, or contains additives such as foam, the limited warranty is reduced to one year from the time of installation. An increase in frequency of inspections is required when the valve is exposed to such supplies and other corrosive conditions or chemicals that could impact valve materials or the operation of the assembly. The system and all components must be designed accordingly for the increased demand. It is required to thoroughly flush the valve and trim assembly with fresh water and reset to the set condition after each operation.

Proper operation of the DV-5A Single Interlock Pre-action Dry Pilot Actuation Valve depends upon their trim being installed in accordance with the instructions given in this technical data sheet. Failure to follow the appropriate trim diagram may prevent the DV-5A Valve from functioning properly, as well as void approvals and the manufacturer’s warranties.

The DV-5A Valve must be installed in a readily visible and accessible location. The DV-5A Valve, associated trim, and wet pilot lines must be maintained at a minimum temperature of 40°F (4°C). Heat tracing of the DV-5A Valve or its associated trim is not permitted. Heat tracing can result in the formation of hardened mineral deposits that are capable of preventing proper operation.

Always open the system control valves slowly to avoid a sudden rush of water entering the system. The DV-5A Valve is to be installed in accordance with the following criteria:

Step 1. All nipples, fittings, and devices must be clean and free of scale and burrs before installation. Use pipe thread sealant sparingly on male pipe threads only.

Step 2. The DV-5A Single Interlock Pre-action Dry Pilot Actuation Valve must be trimmed in accordance with the trim illustrations shown in Figure 5.

Note: If the addition of an Alarm Control Valve is desired or required by the local AHJ, the Alarm Control Valve noted as Item H in Figure 8 is to be a separately ordered electronically supervised normally open valve.

Step 3. Care must be taken to ensure that check valves, strainers, globe valves, etc. are installed with the flow arrows in the proper direction.

Step 4. Drain tubing to the Drip Funnel must be installed with smooth bends that will not restrict flow.

Step 5. The Main Drain and Drip Funnel Drain may be interconnected provided a check valve is located at least 12 in. (300 mm) below the Drip Funnel.

Step 6. Suitable provision must be made for disposal of drain water. Drainage water must be directed such that it will not cause accidental damage to property or danger to persons.

Step 7. Connect the Diaphragm Supply Valve to the inlet side of the System Main Control Valve in order to facilitate setting of the DV-5a Valve (See Figure 8).

Step 8. An Inspector’s Test Connection, as described in the Dry Pilot Actuation section, must be provided for Dry Pilot Actuation systems.

Step 9. An Air Maintenance Device, as described in the Dry Pilot Actuation section, must be provided for Dry Pilot Actuation.

Step 10. A desiccant dryer, when specified for Dry Pilot Actuation, is to be installed between a drip leg and the Air Maintenance Device.

Step 11. The Low Pressure Alarm Switch for Dry Pilot Actuation is to be adjusted as follows:

- Low pressure alarm setting at approximately 6 psi (0,4 bar) below the minimum pilot line service pressure requirement shown in Graph B
- Fire alarm setting at approximately 15 psi (1,0 bar) below the minimum pilot line service pressure requirement shown in Graph B

Step 12. Unused Pressure Alarm Switch connections must be plugged.

Step 13. The Dry Pilot Pressure Relief Valve (Item Y - Figure 8) provided with the Dry Pilot Actuation Trim is factory set to relieve at a pressure of approximately 46 psi (3,1 bar), which can typically be used for a maximum dry pilot actuation system pressure of 40 psi (2,8 bar). The Pressure Relief Valve may be reset; however, it must be reset to relieve at a pressure which is in accordance with the requirements of the authority having jurisdiction.
To reset the Dry Pilot Pressure Relief Valve, first loosen the jam nut and then adjust the cap accordingly, clockwise for a higher pressure setting or counter clockwise for a lower pressure setting. After verifying the desired pressure setting, tighten the jam nut.

Step 14. A suitable automatic supervisory air (nitrogen) supply, as described in the Technical Data section, is to be installed between a drip leg and the Model AMD-1 Air Maintenance Device or between the Model G16AC812 Automatic Supervisory Air Supply and the Preaction Trim.

Step 15. A desiccant dryer, when required for the supervisory air supply, is to be installed between a drip leg and the Model AMD-1 Air Maintenance Device or between the Model G16AC812 Automatic Supervisory Air Supply and the Preaction Trim.

Step 16. The Supervisory Low Pressure Switch is to be wired to the supervisory alarm initiating circuit of an alarm panel.

Step 17. Conduit and electrical connections are to be made in accordance with the applicable standards of the approval agency.

Notes:
1. Port Connections P1 through P7 are described in Figure 2.
2. External Trim Connections C1 through C5 are described in Figure 6.
3. When ordering pre-assembled “DV-5a Valve with Galvanized Trim” or pre-assembled “DV-5a Valve with Galvanized Trim and Butterfly Valve”, Items A1 through A9 are provided, as applicable related to valve size.
4. When ordering DV-5a Trim separately from the DV-5a Valve, Items A1 through A9 are separately ordered, as applicable related to valve size. Water Pressure Gauges for EMEA valve trim are also separately ordered.

FIGURE 5
DV-5a VALVE SINGLE INTERLOCK PREACTION DRY PILOT ACTUATION TRIM SEMI-ASSEMBLED
Notes:
1. Port Connections P1 through P7 are described in Figure 2.
2. External Trim Connections C1 through C5 are described in Figure 8.
3. When ordering pre-assembled "DV-5A Valve with Galvanized Trim" or pre-assembled "DV-5 Valve with Galvanized Trim and Butterfly Valve", items A1 through A9 are provided, as applicable related to valve size.
4. When ordering DV-5A Trim separately from the DV-5A Valve, Items A1 through A9 are separately ordered, as applicable related to valve size. Water Pressure Gauges for EMEA valve trim are also separately ordered.

FIGURE 6 (1 OF 2)

DV-5A VALVE — SINGLE INTERLOCK PREACTION DRY PILOT ACTUATION TRIM

EXPLODED VIEW
ITEM | QTY. | DESCRIPTION |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>2</td>
<td>UNION</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>STREET ELBOW</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>ELBOW</td>
</tr>
<tr>
<td>29</td>
<td>4</td>
<td>ELBOW</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>CROSS</td>
</tr>
<tr>
<td>31</td>
<td>4</td>
<td>TEE</td>
</tr>
<tr>
<td>32</td>
<td>3</td>
<td>REDUCING TEE</td>
</tr>
<tr>
<td>34</td>
<td>2</td>
<td>REDUCING TEE</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>REDUCING TEE</td>
</tr>
<tr>
<td>36</td>
<td>2</td>
<td>PIPE NIPPLE</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>PIPE NIPPLE</td>
</tr>
<tr>
<td>38</td>
<td>9</td>
<td>PIPE NIPPLE</td>
</tr>
<tr>
<td>39</td>
<td>5</td>
<td>PIPE NIPPLE</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>PIPE NIPPLE</td>
</tr>
<tr>
<td>41</td>
<td>2</td>
<td>PIPE NIPPLE</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>PIPE NIPPLE</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>PIPE NIPPLE</td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>PIPE NIPPLE</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>PIPE NIPPLE</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>PIPE NIPPLE</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>PIPE NIPPLE</td>
</tr>
<tr>
<td>48</td>
<td>1</td>
<td>TUBING, MRA-1 DRAIN</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>TUBING, MC-2 DRAIN</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>TUBING, DP-1 DRAIN</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>TUBING ASSY. ALARM TEST INTERCONNECT</td>
</tr>
<tr>
<td>52</td>
<td>1</td>
<td>TUBING ASSY. SYSTEM DRAIN</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>PIPE NIPPLE</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>PIPE NIPPLE</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>PIPE NIPPLE</td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>PIPE NIPPLE</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>PIPE NIPPLE</td>
</tr>
<tr>
<td>58</td>
<td>1</td>
<td>PIPE NIPPLE</td>
</tr>
<tr>
<td>59</td>
<td>2</td>
<td>WATER PRESSURE GAUGE, 300 PSI / 2000 kPa (AMER/APAC)</td>
</tr>
<tr>
<td>60</td>
<td>2</td>
<td>WATER PRESSURE GAUGE, 20 bar / 2000 kPa (EMEA)</td>
</tr>
<tr>
<td>61</td>
<td>1</td>
<td>AIR PRESSURE GAUGE, 80 PSI / 550 kPa RETARDED TO 256PSI / 1750 kPa</td>
</tr>
<tr>
<td>62</td>
<td>1</td>
<td>LABEL</td>
</tr>
<tr>
<td>63</td>
<td>1</td>
<td>LABEL</td>
</tr>
</tbody>
</table>

A1 DV-5A VALVE

NOTE:

- Not VdS Approved

CH - Common Hardware - See Materials of Construction section for specifications.

FIGURE 6 (2 OF 2)

DV-5A VALVE — SINGLE INTERLOCK PREACTION DRY PILOT ACTUATION TRIM

EXPLODED VIEW
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2 (40)</td>
<td>2.8 (71)</td>
<td>9.7 (246)</td>
<td>10.4 (264)</td>
<td>16.5 (419)</td>
<td>19.4 (493)</td>
<td>7.3 (185)</td>
<td>10.2 (259)</td>
<td>8.0 (203)</td>
<td>1.2 (31)</td>
</tr>
<tr>
<td>2 (50)</td>
<td>2.8 (71)</td>
<td>9.7 (246)</td>
<td>10.4 (264)</td>
<td>16.5 (419)</td>
<td>19.4 (493)</td>
<td>7.3 (185)</td>
<td>10.2 (259)</td>
<td>3.8 (97)</td>
<td>2.9 (74)</td>
</tr>
<tr>
<td>3 (80)</td>
<td>3.0 (76)</td>
<td>11.4 (290)</td>
<td>12.0 (305)</td>
<td>16.5 (419)</td>
<td>21.2 (539)</td>
<td>5.8 (147)</td>
<td>13.8 (351)</td>
<td>3.9 (99)</td>
<td>3.6 (91)</td>
</tr>
<tr>
<td>4 (100)</td>
<td>3.0 (76)</td>
<td>12.7 (323)</td>
<td>13.1 (333)</td>
<td>16.5 (419)</td>
<td>22.6 (574)</td>
<td>5.1 (130)</td>
<td>16.8 (427)</td>
<td>4.5 (114)</td>
<td>4.3 (109)</td>
</tr>
<tr>
<td>6 (150)</td>
<td>4.5 (114)</td>
<td>14.0 (356)</td>
<td>15.0 (381)</td>
<td>18.4 (467)</td>
<td>25.4 (645)</td>
<td>3.4 (86)</td>
<td>22.4 (569)</td>
<td>5.9 (150)</td>
<td>5.7 (145)</td>
</tr>
<tr>
<td>8 (200)</td>
<td>5.3 (135)</td>
<td>16.8 (427)</td>
<td>17.2 (437)</td>
<td>19.5 (495)</td>
<td>29.1 (739)</td>
<td>2.9 (74)</td>
<td>27.5 (699)</td>
<td>5.2 (132)</td>
<td>6.7 (170)</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensions based on drain valves being open.
2. Dimensions do not provide installation clearance.

FIGURE 7
DV-5a VALVE
SINGLE INTERLOCK PREACTION DRY PILOT ACTUATION TRIM
NOMINAL DIMENSIONS
Step 18. Before a system hydrostatic test is performed, the DV-5a Diaphragm Chamber is to be depressurized, the Automatic Drain Valve is to be temporarily replaced with a plug, and the Diaphragm Cover Bolts must be uniformly and securely tightened using a cross-draw sequence. After tightening, double-check to make certain that all of the Diaphragm Cover Bolts are securely tightened. See Table B in the Care and Maintenance section for torque specifications.

Note: When installing dry pilot actuation, the system will require two automatic air supplies as described in Steps 9 and 14.

Valve Setting Procedure

Perform Steps 1 through 16 when initially setting the TYCO DV-5a Valve, after an operational test of the fire protection system, or after system operation due to a fire. See Figure 8.

Step 1. Close the System Main Control Valve (B).

Step 2. Close the Diaphragm Supply Valve (P) and close the Dry Pilot Air Supply Valve (W).

Step 3. Close the Supervisory Air Supply Valve (R).

Step 4. Open the Main Drain Valve (D), System Drain Valve (E), and all auxiliary drains in the system. Close the auxiliary drain valves and the System Drain Valve (E) after water ceases to discharge. Leave the Main Drain Valve (D) open.

At this time make certain that the Pressure Gauge Valves and the Alarm Control Valve (H), as applicable, are open.

Step 5. Depress the plunger of the Automatic Drain Valve (F) to verify that it is open.

Step 6. Clean the Diaphragm Supply Strainer (Q) by removing the clean-out plug and strainer basket. The Diaphragm Supply Strainer (Q) may be flushed out by momentarily opening the Diaphragm Supply Valve (P).

Step 7. Replace any operated sprinklers on the system piping, as applicable.

Step 8. Reset the automatic actuation system. Replace operated pilot sprinklers and/or reset the remote Manual Control Stations. Reestablish dry pilot pneumatic pressure.

NOTICE

In order to prevent the possibility of a subsequent operation of an overheated solder type pilot sprinkler, any solder type pilot sprinklers that were possibly exposed to a temperature greater than their maximum rated ambient must be replaced.

Step 9. Operate (open) the Manual Control Station (M) and then open the Diaphragm Supply Valve (P). After unaerated water ceases to discharge from the Manual Control Station (M) drain tube, slowly close the operating lever by pushing it up. Do not close the hinged cover at this time.

Step 10. After allowing water to flow out of the Manual Reset Actuator (N) drain tube until aerated water ceases to discharge, reset the Manual Reset Actuator (N) by pressing the Reset Knob and hold until water stops flowing from its drain tube and the pressure builds and reaches approximately 15 psi (1,0 bar) on the Diaphragm Gauge (K). Pressure will then build up in the DV-5a Diaphragm Chamber.

Step 11. Verify the ability for the DV-5a Diaphragm to hold pressure as follows:

- With the diaphragm chamber pressurized per Step 10, temporarily close the Diaphragm Supply Valve (P), and then observe the Diaphragm Gauge (K) for a drop in pressure.
- If a drop in pressure is noted, the DV-5a Diaphragm is to be replaced and/or any leaks must be corrected before proceeding to the next step.
- If the Diaphragm Gauge (K) indicates no drop in pressure, re-open the Diaphragm Supply Valve (P) and proceed to the next step.

Step 12. Open the Supervisory Air Supply Valve (R) to reestablish supervisory system air pressure at nominally 10 psi (0.68 bar).

Step 13. Partially open the System Main Control Valve (B). Slowly close the Main Drain Valve (D) as soon as water discharges from the Main Drain Valve (D). Observe the Automatic Drain Valve (F) for leaks. If there are leaks, determine/correct the cause of the leakage problem before proceeding.

NOTICE

When the System Main Control Valve (B) is partially opened, the pressure on the DV-5a Diaphragm Chamber may increase. This increase in pressure is normal, and if the pressure is greater than 300 psi (20,7 bar), the pressure is to be relieved by partially and temporarily opening the Manual Control Station (M); however, do not allow the pressure as indicated on the Diaphragm Gauge (K) to drop below the supply pressure shown on the Water Supply Gauge (J), since this action may result in tripping of the DV-5a Valve.

Step 14. Close the hinged cover of the Manual Control Station (M) and insert a new break rod in the small hole through the top of the enclosing box.

Step 15. Fully open the System Main Control Valve (B).

Step 16. After setting a fire protection system, notify the proper authorities and advise those responsible for monitoring proprietary and/or central station alarms.
Item Description

A	DV-5a Valve
B	System Main Control Valve
C	Waterflow Pressure Switch
D	Main Drain Valve
E	System Drain Valve
F	Automatic Drain Valve
G	Alarm Test Valve
H	Alarm Control Valve (Optional)
J	Water Supply Gauge
K	Diaphragm Gauge
L	System Gauge
M	Manual Control Station

N	Manual Reset Actuator
O	Diaphragm Supply Valve
P	Diaphragm Supply Strainer
R	Inverted Flare Shut-Off Valve
S	Supervisory Air Supply Valve
T	Supervisory Air Pressure Relief Valve
U	Supervisory Low Pressure Switch
V	Dry Pilot Actuator
W	Dry Pilot Low Pressure Switch
X	Dry Pilot Air Supply Valve
Y	Dry Pilot Line Gauge
Z	Dry Pilot Air Pressure Relief Valve

External Trim Connections

- **C1**: Diaphragm Supply Connection
- **C2**: Water Motor Alarm Connection
- **C3**: Dry Pilot Connection
- **C4**: Dry Pilot Air Supply Connection
- **C5**: Supervisory Air Supply Connection
- **C6**: Waterflow Pressure Alarm Switch Connection
- **C7**: Low Air Pressure Alarm Switch Connection
- **C8**: Main Drain Connection
- **C9**: Drip Funnel Connection

Note:
Port Connections P1 through P7 are described in Figure 2.

FIGURE 8
DV-5a VALVE - SINGLE INTERLOCK PREACTION DRY PILOT ACTUATION
(See Figure 6 for specific Bills of Materials)
Care and Maintenance

The following procedures and inspections must be performed as indicated, in addition to any specific requirements of the NFPA and any applicable standards recognized by the Approval agency. Any impairment must be immediately corrected. See Figure 8.

NOTICE

If the water supply needs to be shut off to the DV-5a valve and trim and cannot be shut off upstream of the system, close the System Main Control Valve (B), the Diaphragm Supply Valve (P), and the Inverted Flare Shut-Off Valve (R). This will allow any trim above the System Main Control Valve (B) to be taken apart for service if necessary.

The frequency at which the following procedures and inspections are to be performed are to be in accordance with the NFPA and any applicable specific requirements of the standards recognized by the Approval agency.

Before closing a fire protection system main control valve for maintenance work on the fire protection system that it controls, permission to shut down the affected fire protection systems must first be obtained from the proper authorities and all personnel who may be affected by this action must be notified.

The owner is responsible for the inspection, testing, and maintenance of their fire protection system and devices in compliance with this document, as well as with the NFPA and any applicable standards recognized by the Approval agency. Contact the installing contractor or product manufacturer with any questions.

Some procedures in this section result in the operation of the associated alarms. Notify the owner and the fire department, central station, or other signal station to which the alarms are connected before performing the tests.

It is recommended that automatic sprinkler systems be inspected, tested, and maintained by a qualified Inspection Service in accordance with the NFPA and any applicable standards recognized by the Approval agency.

Drop in Water Supply Pressure Below Normal Range

NOTICE

If the water supply pressure is significantly reduced below the normally expected static pressure range (as could occur in the case of a water main break or repair), and there is a subsequent drop in the diaphragm chamber water pressure below its normal range (for example, due to a leak in a piping connection to or from the diaphragm chamber or, a leak in the diaphragm chamber check valve caused by dirt or debris in the check valve seal area), a deluge valve such as the DV-5a could inadvertently trip, if its water supply pressure is quickly restored.

A drop in the water supply pressure to below its normal range (as in the case of an interrupted water supply condition) constitutes an emergency impairment.

Should this condition occur, immediately close the System Main Control Valve (B) and use the following procedure to reset the system:

Step 1. Prior to the water supply pressure being restored to the closed System Main Control Valve (B), note the pressure indicated by the Diaphragm Gauge (K) and determine if the pressure is within the normally expected range.

Step 2. If the diaphragm chamber pressure is below the normal range, check for and correct any source of leakage from the diaphragm chamber prior to resetting the system.

Step 3. After the water supply pressure is restored to the System Main Control Valve (B), reset the DV-5a Valve in accordance with the Valve Setting Procedure section.

NOTICE

For fire protection systems subject to an emergency impairment caused by an interrupted water supply condition, it is recommended that consideration be given to installing a low water supply pressure switch with the appropriate alarm/indicators to monitor the water supply pressure.

Waterflow Alarm Test Procedure

To test the waterflow alarm, open the Alarm Test Valve (G), which will allow a flow of water to the Waterflow Pressure Switch (C) and/or Water Motor Alarm. Upon satisfactory completion of the test, close the Alarm Test Valve (G).

To ensure drainage of the alarm line, depress the plunger on the Automatic Drain Valve (F).

Supervisory Low Pressure Alarm Test Procedure

Proper operation of the Supervisory Low Pressure Switch (U) must be performed as follows:

Step 1. Open the System Drain Valve (E) just enough to slowly relieve supervisory air pressure from the system. Verify that the Supervisory Low Pressure Switch (U) is operational and that the low pressure set point is approximately 5 psi (0,34 bar).

Step 2. Close the System Drain Valve (E) and allow the system supervisory pressure of 10 ± 2 psi (0,69 ± 0,14 bar) to be automatically re-established. The Supervisory Low Pressure Switch (U) should return to its normal condition.

Pressure Relief Valve Maintenance

Over pressurization of the system piping with air will result in the opening of the Supervisory Air Pressure Relief Valve (T). If the Supervisory Air Pressure Relief Valve (T) continues to bleed air after the system pressure has been reduced to its normal supervisory pressure range of 10 ± 2 psi (0,69 ± 0,14 bar), most likely debris became lodged in the seating area. To help clean the seating area, slowly pull up on the ring at the top of the Supervisory Air Pressure Relief Valve (T) to allow a full flow of air through the Supervisory Air Pressure Relief Valve (T), and then release the ring to allow the Supervisory Air Pressure Relief Valve (T) to snap closed. Repeat the cleaning procedure as necessary.
Dry Pilot Actuation Operation Test Procedure

Proper operation of the DV-5A Valve, such as opening of the DV-5A Valve during a fire condition, must be verified as follows:

Step 1. If water must be prevented from flowing beyond the riser, perform the following steps:

- Close System Main Control Valve (B). Open Main Drain Valve (D).
- Open System Main Control Valve (B) one turn beyond position at which water just begins to flow from Main Drain Valve (D).
- Slowly close the Main Drain Valve (D).

Step 2. Open the Inspector’s Test Connection.

Note: Be prepared to quickly perform Steps 3, 4, and 5 if water must be prevented from flowing beyond the riser.

Step 3. Verify that the DV-5A Valve has tripped, as indicated by the flow of water into the system.

Step 4. Close the System Main Control Valve (B).

Step 5. Close the Diaphragm Supply Valve (P).

Step 6. Reset the DV-5A Valve in accordance with the Valve Setting Procedure.

Dry Pilot Actuator Test Procedure

Proper operation of the Dry Pilot Actuator for dry pilot actuation must be verified as follows:

Step 1. Close the System Main Control Valve (B).

Step 2. Open the Main Drain Valve (D).

Step 3. Open the Inspector’s Test Connection on the Dry Pilot Line.

Step 4. Verify that there is a flow of water from the Dry Pilot Actuator (U) drain connection.

Step 5. Verify that the Diaphragm Chamber pressure has decreased to below 25% of the water supply pressure.

Step 6. Close the Inspector’s Test Connection and allow the dry pilot line pressure to re-establish, and proceed as follows:

- Water should cease draining from the Dry Pilot Actuator (U) but remain draining from the Manual Reset Actuator (N).
- Press the Reset Knob on the Manual Reset Actuator (N) and hold it a few seconds until water stops flowing from its drain valve.
- Pressure will then build up in the DV-5A Diaphragm Chamber.
- After system pressure is restored in the DV-5A Diaphragm Chamber, inspect the Dry Pilot Actuator (U) and Manual Reset Actuator (N) for leaks at the drain tubes. Any leaks must be corrected before proceeding to the next step.

Step 7. Partially open the System Main Control Valve (B) as soon as water discharges from the Main Drain Valve (D) and then close the Main Drain Valve (D) as soon as water discharges from the Main Drain Valve (D) and then close the Main Drain Valve (D).

Low Pressure Alarm and Condensate Drain for Dry Pilot Actuation Test Procedures

Testing of the Dry Pilot Low Pressure Switch (W) is operational and that the low pressure set points are as follows:

- Low pressure alarm setting at approximately 6 psi (0.4 bar) below the minimum pilot line service pressure requirement shown in Graph B.
- Fire alarm setting at approximately 14.5 psi (1.0 bar) below the minimum pilot line service pressure requirement shown in Graph B.

Step 5. Close the Inspector’s Test Connection and allow the Dry Pilot Line to automatically repressurize.

Step 6. Individually open each low point drain and then close after discharge of any trapped condensate.

The gauge test valve to which the Dry Pilot Line Gauge (Y) is connected must be used as a low point drain. Close the gauge test valve, remove the plug, and partially open the gauge test valve (as necessary, collect water in a cup). After condensate ceases to drain, close the gauge test valve, replace the plug, and then completely open the gauge test valve.

Step 7. Allow the Dry Pilot Line to automatically repressurize.

Step 8. Open the Diaphragm Supply Valve (P).

Step 9. Partially open the System Main Control Valve (B). Slowly close the Main Drain Valve (D) as soon as water discharges from the Main Drain Valve (D). Observe the Automatic Drain Valve (F) for leaks. If there are leaks, determine/correct the cause of the leakage problem. If there are no leaks, the DV-5A Valve is ready to be placed in service and the System Main Control Valve (B) must then be fully opened.

Low Pressure Switch (W) must then be fully opened.

Step 1. Close the System Main Control Valve (B).

Step 2. Close the Diaphragm Supply Valve (P).

Step 3. Open the Main Drain Valve (D).
To perform internal valve inspection between Steps 4 and 5 of the Valve Setting Procedure remove the Diaphragm cover as follows:

Step 1. Close the Inverted Flare Shut-Off Valve (R).

Step 2. Remove the Copper Tube Fitting between the Diaphragm Supply Valve (P) and the Inverted Flare Shut-Off Valve (R).

Step 3. Loosen the union securing the Dry Pilot Actuation Trim, and remove the Dry Pilot Actuation Trim.

Step 4. Loosen and remove the union between the Diaphragm Cover and the MRA-1 Manual Reset Actuator (N) and remove the MRA-1 Manual Reset Actuator (N) subassembly.

Step 5. Remove the Diaphragm Valve Cover hardware, then slowly remove the Diaphragm Cover and perform internal valve inspection. Clean the valve interior and replace parts as necessary.

After cleaning and inspecting valve interior, and replacing parts as necessary, reinstall the Diaphragm Cover by completing the following steps to assure the Diaphragm Cover Fasteners are uniformly and securely tightened.

Step 1. With reference to Figure 1, ensure that the Diaphragm is properly oriented and that the proper hardware arrangement is utilized when assembling the Diaphragm Covers. The hardware arrangements differ depending on the size of the DV-5A Valve.

Step 2. By first using the Long Hex Bolts, support of the Diaphragm Cover will be provided before installing the Short Hex Bolts. Align Diaphragm in proper orientation with Valve Body, and then align Diaphragm Cover in proper orientation with Valve Body. Hand-tighten all fasteners.

Step 3. Using crossdraw sequence to assure uniformity, wrench-tighten Long Hex Bolts and Short Hex Bolts to appropriate torque values. Repeat crossdraw sequence two to three times at incremental torque values until reaching the torque values found in Table B.

Step 4. Inspect to assure all Hex Bolts are securely tightened.

Step 5. Using the union, secure the MRA-1 Manual Reset Actuator (N) to the Diaphragm Cover.

Step 6. Using the union, secure the Dry Pilot Actuation Trim.

Step 7. Replace the Copper Tube Fitting between the Diaphragm Supply Valve (P) and the Inverted Flare Shut-Off Valve (R).

Step 8. Ensure that the unions and flare fittings are securely tightened.

Step 9. With the Diaphragm Supply Valve (P) closed, fully open the Inverted Flare Shut-Off Valve (R) stainless steel screw (approximately ½ in.) until resistance is met so as not to break the internal roll-pin. The internal roll-pin stops the removal of the Inverted Flare Shut-Off Valve (R) stainless steel screw.

Step 10. Proceed with Step 5 of the Valve Setting Procedures section in this data sheet.

NOTICE

If the water supply contains chemicals which tend to attack a polyester fabric-reinforced, EPDM rubber or the five year inspection indicates a build-up of debris within the DV-5A Valve that could affect its proper operation, then the frequency of the internal valve inspection procedure must be appropriately increased.

With reference to Figure 1, make certain that the Diaphragm is correctly oriented; otherwise, the DV-5A Valve cannot be properly set.

Under-tightening the Diaphragm Cover Bolts can result in internal and external leakage.

Use only TYCO replacement fasteners as specified in Figure 1.

Do not apply adhesives, lubricants, or other substances to the Diaphragm Valve Body.

TABLE B

<table>
<thead>
<tr>
<th>Nominal Valve Sizes ANSI Inches (DN)</th>
<th>Nuts Torque lb-ft (N-m)</th>
<th>Short Hex Bolts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/2 (40)</td>
<td>44 (59.7)</td>
<td>35 (47.5)</td>
</tr>
<tr>
<td>2 (50)</td>
<td>44 (59.7)</td>
<td>35 (47.5)</td>
</tr>
<tr>
<td>3 (80)</td>
<td>188 (254.9)</td>
<td>150 (203.4)</td>
</tr>
<tr>
<td>4 (100)</td>
<td>396 (536.9)</td>
<td>316 (428.4)</td>
</tr>
<tr>
<td>6 (150)</td>
<td>265 (359.3)</td>
<td>212 (287.4)</td>
</tr>
<tr>
<td>8 (200)</td>
<td>545 (738.9)</td>
<td>436 (591.1)</td>
</tr>
</tbody>
</table>

Internal Valve Inspection

Once every five years during the annual operational test procedure and prior to the DV-5A Valve being reset and with the DV-5A Valve de-pressurized, the interior of the DV-5A Valve must be cleaned and inspected for wear and damage. Damaged or worn parts must be replaced. Replacement of the Diaphragm every ten years is recommended, or more frequently if inspections and/or wear and tear warrant more frequent replacement.

NOTICE

The Diaphragm Cover may be removed between Steps 4 and 5 of the reseting instructions, since at that point the DV-5A Valve should be de-pressurized as evident by a zero gauge reading on the Diaphragm Gauge (K) and Water Supply Gauge (J), as well as no water discharging from the Automatic Drain Valve (F).
Limited Warranty
For warranty terms and conditions, visit www.tyco-fire.com.

Ordering Procedure
The TYCO DV-5a Automatic Water Control Single Interlock Preaction Dry Pilot Actuation Valve may be ordered as follows:

Pre-Assembled Valves with Trim

DV-5a Valves with Galvanized Trim and Butterfly Valve
Specify: Size (specify), DV-5a Automatic Water Control Valve, G x G connections with assembled galvanized Americas Single Interlock Preaction Dry Pilot Actuation Trim, complete with assembled Model BFV-300 Butterfly Valve, P/N (specify):

Groove x Groove
1 1/2 in. (DN40) 551011215
2 in. (DN50) 551011220
3 in. (DN80) 551011230
4 in. (DN100) 551011240
6 in. (DN150) 551011260
8 in. (DN200) 551011280

Note: Americas pressure switches, P/N 52-287-1-124 solenoid valve, and psi/kPa water pressure gauges are provided

This arrangement is available for EMEA and APAC upon request. Contact your local distributor.

AMERICAS

DV-5a Valves with Galvanized Trim
Specify: Size (specify), DV-5a Automatic Water Control Valve, (specify) end connection with assembled galvanized Americas Single Interlock Preaction Dry Pilot Actuation Trim P/N (specify):

Groove x Groove
1 1/2 in. (DN40) 550011215
2 in. (DN50) 550011220
3 in. (DN80) 550011230
4 in. (DN100) 550011240
6 in. (DN150) 550011260
8 in. (DN200) 550011280

T x T NPT
1 1/2 in. (DN40) 550061215
2 in. (DN50) 550061220

Note: Pressure switches, P/N 52-287-1-124 solenoid valve, and psi/kPa water pressure gauges are provided.

Separate DV-5a Valves without Trim
See Table A for flange drilling specifications.
Specify: Size (specify), DV-5a Automatic Water Control Valve, (specify) end connection, P/N (specify):

Groove x Groove
1 1/2 in. (DN40) 530010015
2 in. (DN50) 530010020
3 in. (DN80) 530010030
4 in. (DN100) 530010040
6 in. (DN150) 530010060
8 in. (DN200) 530010080

Flange x Flange ANSI
3 in. (DN80) 530030030
4 in. (DN100) 530030040
6 in. (DN150) 530030060
8 in. (DN200) 530030080

T x T NPT
1 1/2 in. (DN40) 530060015
2 in. (DN50) 530060020

Notes:
Valves are typically provided with flange drilling per ANSI B16.1 (Class 125) or ISO (7005-2 PN16).

Upon request, valves can be provided with flange drilling per JIS B 2210 or AS 2129. In which case part numbers are not assigned.

DV-5a Valve Trim
Specify: Size (specify), finish (specify), Dry Pilot Actuation Trim for DV-5a Automatic Water Control Valves used in Single Interlock Preaction Fire Protection System, P/N (specify):

Galvanized
1 1/2 in. (DN40) 540001220
2 in. (DN50) 540001220
3 in. (DN80) 540001230
4 in. (DN100) 540001240
6 in. (DN150) 540001260
8 in. (DN200) 540001280

Black
1 1/2 in. (DN40) 542001220
2 in. (DN50) 542001220
3 in. (DN80) 542001230
4 in. (DN100) 542001240
6 in. (DN150) 542001260
8 in. (DN200) 542001280

Note: Pressure switches and/or solenoid valves for electric actuation are separately ordered.

EMEA

DV-5a Valves with Galvanized Trim
Specify: Size (specify), DV-5a Automatic Water Control Valve, (specify) end connection with assembled galvanized EMEA Single Interlock Preaction Dry Pilot Actuation Trim, P/N (specify):

Groove x Groove
1 1/2 in. (DN40) 550111215
2 in. (DN50) 550111220
3 in. (DN80) 550111230
4 in. (DN100) 550111240
6 in. (DN150) 550111260
8 in. (DN200) 550111280

Flange x Flange ANSI
3 in. (DN80) 550121230
4 in. (DN100) 550121240
6 in. (DN150) 550121260
8 in. (DN200) 550121280

Flange x Groove ANSI
3 in. (DN80) 550131230
4 in. (DN100) 550131240
6 in. (DN150) 550131260
8 in. (DN200) 550131280

Flange x Groove ISO
3 in. (DN80) 550141230
4 in. (DN100) 550141240
6 in. (DN150) 550141260
8 in. (DN200) 550141280

Flange x Groove ISO
3 in. (DN80) 550151230
4 in. (DN100) 550151240
6 in. (DN150) 550151260
8 in. (DN200) 550151280

T x T ISO
1 1/2 in. (DN40) 550171215
2 in. (DN50) 550171220

Note: Pressure switches, P/N 52-287-1-124 solenoid valve, bar.psi water pressure gauges, and NPT to ISO threaded trim adaptors for external connections are provided.

Separate DV-5a Valves without Trim
See Table A for flange drilling specifications.
Specify: Size (specify), DV-5a Automatic Water Control Valve, (specify) end connection, P/N (specify):

Groove x Groove
1 1/2 in. (DN40) 530010015
2 in. (DN50) 530010020
3 in. (DN80) 530010030
4 in. (DN100) 530010040
6 in. (DN150) 530010060
8 in. (DN200) 530010080

T x T NPT
1 1/2 in. (DN40) 530060015
2 in. (DN50) 530060020

T x T ISO
1 1/2 in. (DN40) 550171215
2 in. (DN50) 550171220

Note: Pressure switches, P/N 52-287-1-124 solenoid valve, bar.psi water pressure gauges, and NPT to ISO threaded trim adaptors for external connections are provided.
Flange x Flange ISO
3 in. (DN80) 530040030
4 in. (DN100) 530040040
6 in. (DN150) 530040060
8 in. (DN200) 530040080

Flange x Groove ISO
3 in. (DN80) 530050030
4 in. (DN100) 530050040
6 in. (DN150) 530050060
8 in. (DN200) 530050080

T x T ISO
1 1/2 in. (DN40) 530070015
2 in. (DN50) 530070020

Notes:
Valves are typically provided with flange drilling per ANSI B16.1 (Class 125) or ISO (7005-2 PN16).

Upon request, valves can be provided with flange drilling per JIS B 2210 or AS 2129. In which case part numbers are not assigned.

DV-5a Valve Trim
Specify: Size (specify), finish (specify), Dry Pilot Actuation Trim for DV-5a Automatic Water Control Valves used in Single Interlock Preaction Fire Protection System, P/N (specify):

Galvanized
1 1/2 in. (DN40) 540101220
2 in. (DN50) 540101230
3 in. (DN80) 540101230
4 in. (DN100) 540101240
6 in. (DN150) 540101260
8 in. (DN200) 540101280

Black
1 1/2 in. (DN40) 542101220
2 in. (DN50) 542101230
3 in. (DN80) 542101230
4 in. (DN100) 542101240
6 in. (DN150) 542101260
8 in. (DN200) 542101280

Note: Pressure switches, solenoid valves for electric actuation, water pressure gauges, and BFV-300 Butterfly Valve are separately ordered. NPT to ISO threaded adaptors are provided for External Trim Connections (drains, pressure switches, water motor alarms, etc.).

APAC
DV-5a Valves with Galvanized Trim
Specify: Size (specify), DV-5a Automatic Water Control Valve, (specify) end connection with assembled galvanized APAC Single Interlock Preaction Dry Pilot Actuation Trim, P/N (specify):

Groove x Groove
1 1/2 in. (DN40) 550011215
2 in. (DN50) 550011220
3 in. (DN80) 550011230
4 in. (DN100) 550011240
6 in. (DN150) 550011260
8 in. (DN200) 550011280

Flange x Flange ANSI
3 in. (DN80) 550021230
4 in. (DN100) 550021240
6 in. (DN150) 550021260
8 in. (DN200) 550021280

Flange x Groove ANSI
3 in. (DN80) 550031230
4 in. (DN100) 550031240
6 in. (DN150) 550031260
8 in. (DN200) 550031280

T x T NPT
1 1/2 in. (DN40) 550061215
2 in. (DN50) 550061220

Flange x Flange ISO
3 in. (DN80) 550041230
4 in. (DN100) 550041240
6 in. (DN150) 550041260
8 in. (DN200) 550041280

Flange x Groove ISO
3 in. (DN80) 550051230
4 in. (DN100) 550051240
6 in. (DN150) 550051260
8 in. (DN200) 550051280

Separate DV-5a Valves without Trim
See Table A for flange drilling specifications.

Specify: Size (specify), DV-5a Automatic Water Control Valve, (specify) end connection, P/N (specify):

Groove x Groove
1 1/2 in. (DN40) 530010015
2 in. (DN50) 530010020
3 in. (DN80) 530010030
4 in. (DN100) 530010040
6 in. (DN150) 530010060
8 in. (DN200) 530010080

Flange x Flange ANSI
3 in. (DN80) 530020030
4 in. (DN100) 530020040
6 in. (DN150) 530020060
8 in. (DN200) 530020080

Flange x Groove ANSI
3 in. (DN80) 530030030
4 in. (DN100) 530030040
6 in. (DN150) 530030060
8 in. (DN200) 530030080

T x T NPT
1 1/2 in. (DN40) 530060015
2 in. (DN50) 530060020

Flange x Flange ISO
3 in. (DN80) 530040030
4 in. (DN100) 530040040
6 in. (DN150) 530040060
8 in. (DN200) 530040080

Flange x Groove ISO
3 in. (DN80) 530050030
4 in. (DN100) 530050040
6 in. (DN150) 530050060
8 in. (DN200) 530050080

T x T ISO
1 1/2 in. (DN40) 530070015
2 in. (DN50) 530070020

Notes:
Valves are typically provided with flange drilling per ANSI B16.1 (Class 125) or ISO (7005-2 PN16).

Upon request, valves can be provided with flange drilling per JIS B 2210 or AS 2129. In which case part numbers are not assigned.

DV-5a Valve Trim
Specify: Size (specify), finish (specify), Dry Pilot Actuation Trim for DV-5a Automatic Water Control Valves used in Single Interlock Preaction Fire Protection System, P/N (specify):

Galvanized
1 1/2 in. (DN40) 540001220
2 in. (DN50) 540001220
3 in. (DN80) 540001230
4 in. (DN100) 540001240
6 in. (DN150) 540001260
8 in. (DN200) 540001280

Black
1 1/2 in. (DN40) 542001220
2 in. (DN50) 542001220
3 in. (DN80) 542001230
4 in. (DN100) 542001240
6 in. (DN150) 542001260
8 in. (DN200) 542001280

Note: Pressure switches and/or solenoid valves for electric actuation are separately ordered.

DV-5a Valve Trim Accessories
(spec for separately ordered valve trim)
Specify: Specify Accessory Description, P/N (specify):

Waterflow Pressure Alarm Switch, Potter
PS10-2 (America/APAC) 25720
Waterflow Pressure Alarm Switch
PS10-1 (EMEA) 0260
Supervisory Air Pressure Alarm Switch, Potter
PS40-2 (America/APAC) 25710
Supervisory Air Pressure Alarm Switch
PS40-1 (EMEA) 0262
Model WMA-1 Water Motor Alarm
(America/APAC) 526301010P
Model WMA-1 Water Motor Alarm
(EMEA) 526301021R
Model AMD-1 Air Maintenance Device,
Dry Pilot 523242002
Model AMD-2 Air Maintenance Device,
Dry Pilot 523262001
Model AMD-3 Nitrogen Maintenance Device,
Supervisory Air Supply 523282001
Model G16ACB12 Automatic Supervisory
Air Supply 521201001
Model AMD-1 Air Maintenance Device,
Supervisory Air Supply 523242002
Model AMD-3 Nitrogen Maintenance Device,
Supervisory Air Supply 523282001
Model MC-1
Manual Control Stations 522892001
Water Gauges
with bar/psi 025500013
600 psi Water Gauge psi/kPa (service pressure over 300 psi) 923431004

DV-5a Valve Replacement Parts
Specify: (Description) for use with (specify size) DV-5a Automatic Water Control Valve, P/N (See Figure 1)

DV-5a Valve Trim Replacement Parts
Specify: (Description) for use with DV-5a Valve Trim, P/N (See Figure 6)